生成数据集
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)
读取数据集
调用框架中现有的 API 来读取数据
def load_array(data_arrays, batch_size, is_train=True):
"""构造一个 PyTorch 数据迭代器"""
dataset = data.TensorDataset(*data_arrays)
return data.DataLoader(dataset, batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)
next(iter(data_iter))
"""
[tensor([[-0.4797, 1.2221],
[-1.7350, -0.7920],
[ 1.6545, -0.5305],
[ 0.4495, 0.0369],
[ 0.6698, -2.9512],
[-1.8440, 0.0097],
[-1.3734, -1.1046],
[-0.0820, 1.1982],
[ 1.3479, -0.6992],
[-0.7042, 0.2815]]),
tensor([[-0.9004],
[ 3.4252],
[ 9.3315],
[ 4.9620],
[15.5590],
[ 0.4743],
[ 5.2118],
[-0.0266],
[ 9.2666],
[ 1.8518]])]
"""
定义模型
使用框架的预定义好的层
# nn 是神经网络的缩写
from torch import nn
net = nn.Sequential(nn.Linear(2, 1))
初始化模型参数
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)
定义损失函数
计算均方误差使用的是 MSELoss
类,也称为平方 范数
loss = nn.MSELoss()
定义优化算法
实例化一个 SGD
实例
trainer = torch.optim.SGD(net.parameters(), lr=0.03)
训练
训练过程代码与我们从零开始实现时所做的非常相似
num_epochs = 3
for epoch in range(num_epochs):
for X, y in data_iter:
l = loss(net(X) ,y)
trainer.zero_grad()
l.backward()
trainer.step()
l = loss(net(features), labels)
print(f'epoch {epoch + 1}, loss {l:f}')
"""
epoch 1, loss 0.000229
epoch 2, loss 0.000100
epoch 3, loss 0.000099
"""
比较生成数据集的真实参数和通过有限数据训练获得的模型参数
w = net[0].weight.data
print('w 的估计误差:', true_w - w.reshape(true_w.shape))
b = net[0].bias.data
print('b 的估计误差:', true_b - b)
"""
w 的估计误差: tensor([-4.0531e-06, 2.1982e-04])
b 的估计误差: tensor([7.1526e-06])
"""