生成数据集

import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l
 
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

读取数据集

调用框架中现有的 API 来读取数据

def load_array(data_arrays, batch_size, is_train=True):
	"""构造一个 PyTorch 数据迭代器"""
	dataset = data.TensorDataset(*data_arrays)
	return data.DataLoader(dataset, batch_size, shuffle=is_train)
	
batch_size = 10
data_iter = load_array((features, labels), batch_size)
next(iter(data_iter))
"""
[tensor([[-0.4797,  1.2221],
         [-1.7350, -0.7920],
         [ 1.6545, -0.5305],
         [ 0.4495,  0.0369],
         [ 0.6698, -2.9512],
         [-1.8440,  0.0097],
         [-1.3734, -1.1046],
         [-0.0820,  1.1982],
         [ 1.3479, -0.6992],
         [-0.7042,  0.2815]]),
 tensor([[-0.9004],
         [ 3.4252],
         [ 9.3315],
         [ 4.9620],
         [15.5590],
         [ 0.4743],
         [ 5.2118],
         [-0.0266],
         [ 9.2666],
         [ 1.8518]])]
"""

定义模型

使用框架的预定义好的层

# nn 是神经网络的缩写
from torch import nn
 
net = nn.Sequential(nn.Linear(2, 1))

初始化模型参数

net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)

定义损失函数

计算均方误差使用的是 MSELoss 类,也称为平方 范数

loss = nn.MSELoss()

定义优化算法

实例化一个 SGD 实例

trainer = torch.optim.SGD(net.parameters(), lr=0.03)

训练

训练过程代码与我们从零开始实现时所做的非常相似

num_epochs = 3
for epoch in range(num_epochs):
    for X, y in data_iter:
        l = loss(net(X) ,y)
        trainer.zero_grad()
        l.backward()
        trainer.step()
    l = loss(net(features), labels)
    print(f'epoch {epoch + 1}, loss {l:f}')
"""
epoch 1, loss 0.000229
epoch 2, loss 0.000100
epoch 3, loss 0.000099
"""

比较生成数据集的真实参数和通过有限数据训练获得的模型参数

w = net[0].weight.data
print('w 的估计误差:', true_w - w.reshape(true_w.shape))
b = net[0].bias.data
print('b 的估计误差:', true_b - b)
"""
w 的估计误差: tensor([-4.0531e-06,  2.1982e-04])
b 的估计误差: tensor([7.1526e-06])
"""